A M orphometric Study of the Right Atrioventricular Valve in Cadavers

Lata Munde*, P.S. Bhuiyan**

Abstract

The right atrio-ventricular (tricuspid) valve is having threeleaflets in majority of cases. However, in somecasesit has shown only two leaflets or in few four leaflets. A ccurateknowledge of morphometry and morphology is important in differentiating and treating various pathologies of the right atrio-ventricular (tricuspid) valve. Hence, theaim of the present study is to measurevarious dimensions of theright atrioventricular (tricuspid) val veand noteany variations found. The dimensions weremeasured with thehelp of standard instruments. Thedata obtained was statistically analysed and compared with theavailable literature. The Mean results obtained were (in mm), circumference of right atrioventricular valve annulus: - 10.2, width of anterior leaflet: - 4.9, width of posterior leaflet: - 3.8, width of septal leaflet: - 4.4, height of anterior leaflet: - 3.3, height of posterior leaflet: - 3.4, height of septal leaflet: - 4.8

Keywords: Atrioventricular; M orphometric;Tricuspid;Valve.

Introduction

The right atrioventricular valve is also called as tricuspid valve since it has 3 leaflets as the most common occurrence (62%), two leaflets in 30% and four leaflets in 8\% cases [1].

The anatomy of right atrioventricular valve complex is highly sophisticated but understanding of it may behelpful in the practice of cardiac surgery, especially in the partial transfer of leaflets of tricuspid val vefor mitral valverepair. Theright atrioventricular valve may be involved in severe cardiac malformations. Surgical techniques of tricuspid valve repair has been developed for correction of organic tricuspid regurgitation which is resistant to medical therapy.

The normal values of different dimensions are based on echocardiography or angiography. The appropriateknowledgeof morphometry of tricuspid

[^0]valveisessential for thesuccess of prosthetic implants.

Aim
Thepresent study was performed to estimatethe various dimensions of theright atrioventricular valve in Indian population which may be helpful for cardiothoracic surgeons and invasive cardiologists.

O bjectives

1. To measurethecircumference of tricuspid valve annulus
2. To measurethewidth and height of anterior leaflet
3. To measure the width and height of posterior leaflet
4. To measurethewidth and height of septal leaflet
5. Tonotethe presenceor absenceof cleft in posterior leaflet, to count its number if present

M aterials and M ethods

Fifty four specimens of hearts from cadavers embalmed using 10% formalin were used in this study. Thestudy consisted of meticulousdissection using standard dissection kit and measurement of
various parameters.
The cadaversused in this study were the onesused by the medical students for dissection in a medical teaching institute and tertiary care hospital. Pericardial cavity was explored and the heart was removed from thecavity.

An incision was made along the right border of right atrium across the opening of superior and inferior venae cavae and the cavity of right atrium was opened and cleared off clots that exposed the right atrioventricular orifice and atrial surface of tricuspid leaflets.

Second incision was made parallel to and just to theright of anterior interventricular grooveextending from theroot of pulmonary trunk to theinferior border of the heart. Same incision was extended along the inferior border until it reached the junction between right and inferior borders of the heart.

Thewall of right ventriclewas reflected and cavity of right ventriclecleared off clots with particular care not to damagethe chordaetendineae. That exposed the ventricular aspect of tricuspid valve, chordae tendineae and papillary muscles. Themeasurements were taken in situ with the help of a divider, non elastic thread and measuring scale.

Thecircumference of tricuspid valveannulus was measured with the help of non elastic thread and a measuring scale (Figure 1). The width of anterior leaflet was measured as distance between two points i.e. Point a and b. Point a was marked at thejunction of anterior leaflet with anteroposterior commissure and point b was marked at the junction of anterior leaflet with anteroseptal commissure(Figure2).

Thewidth of theposterior leaflet was measured as distance between two points' c and d. Point c was marked at the junction of posterior leaflet with anteroposterior commissure and point d was marked at the junction of posterior leaflet with posteroseptal commissure.

The width of septal leaflet was measured as distancebetween two points eand f. The point ewas marked at the junction of septal leaflet with anteroseptal commissure and point f was marked at the junction of septal leaflet with posteroseptal commissure

Theheight of anterior, posterior and septal leaflet was measured from base to apex in the middle of leaflet(Figure3).

Presenceor absence of cleft in posterior leaflet was noted, when present its number noted (Figure4).

All the data was recorded and was statistically analysed for thepurpose of calculating the

- Range
- Mean
- Standard deviation

M ean was calculated by the following formula

$$
\bar{x}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}
$$

Fig. 1: Illustration showing measurement of the circumference of right atrioventricular valve annulus.
AL = A nterior Leaflet, PL = Posterior Leaflet, SL = Septal Leaflet, $\mathrm{S}=$ Superior, $\mathrm{I}=$ Inferior, $\mathrm{A}=$ Anterior, $\mathrm{P}=$ Posterior

Fig. 2: Illustration showing measurement of the width of anterior leaflet of right atrioventricular valve. a = Junction of AL with anteroposterior commissure, $b=J u n c t i o n ~ o f ~ A L ~ w i t h ~$ anteroseptal commissure
AL = Anterior Leaflet, PL = Posterior Leaflet, SL = Septal Leaflet, $\mathrm{S}=$ Superior, $\mathrm{I}=$ Inferior, $\mathrm{A}=$ Anterior, $\mathrm{P}=$ Posterior,

Fig. 3: Illustration showing measurement of the height of anterior leaflet of right atrioventricular valve.
AL $=$ A nterior Leaflet, PL $=$ Posterior Leaflet, SL = Septal Leaflet, $\mathrm{S}=$ Superior, $\mathrm{I}=$ Inferior, $\mathrm{A}=$ A nterior, $\mathrm{P}=$ Posterior,

Fig. 4: Illustration showing clefts in the posterior leaflet of the right atrioventricular valve.
AL = A nterior Leaflet, PL = Posterior Leaflet, SL = Septal Leaflet, $\mathrm{S}=$ Superior, $\mathrm{I}=$ Inferior, $\mathrm{A}=$ Anterior, $\mathrm{P}=$ Posterior,

Table 1: Showing measurements of various parameters of tricuspid valve

Sr. N o.	Parameter	Range $(\mathbf{m m})$	M ean $(\mathbf{m m})$	Standard D eviation
1	Circumference of right atrioventricular valve	$92-140$	117.1	10.2
2	annulus	$21-45$	31.8	4.9
3	Width of anterior leaflet	$20-35$	27	3.8
4	Width of posterior leaflet	$16-38$	25.2	4.4
5	Width of septal leaflet	$14-29$	21.1	3.3
6	Height of anterior leaflet	$11-24$	16.6	3.4
7	Height of posterior leaflet	$8-29$	16.7	4.8

Table 2: Showing comparison of various parameters of present study with previous studies.

Sr. No	Parameter	M ohammed AB M otabagani 1	MD Silver et al ${ }^{2}$	Skwarek et al ${ }^{3}$	Skwarek et al 5	R. Kalyani et al 8	Fernando Antoniali et al ${ }^{6}$	Natalia Andrade et al 7	Present study
1	Circumfere nce of right atrioventric ular valve annulus	$\begin{gathered} \hline \text { M - } 129.6 \\ \text { F- } 118.2 \end{gathered}$	$\begin{gathered} \hline \text { M -114 } \\ F-108 \end{gathered}$	-	$\begin{gathered} \hline \text { M-107.28 } \\ \text { F-104.04 } \end{gathered}$	$\begin{gathered} \mathrm{M}-107.5 \\ \mathrm{~F}-104 \end{gathered}$	117.5	96.1	117.1
2	Width of anterior leaflet	$\begin{gathered} \text { M }-43.6 \\ \text { F- } 30.8 \end{gathered}$	$\begin{gathered} M-39 \\ F-35 \end{gathered}$	-	$\begin{gathered} M-33.56 \\ F-31.17 \end{gathered}$	$\begin{gathered} M-36.40 \\ F-36.4 \end{gathered}$	46.3	44.2	31.8
3	Width of posterior leaflet	$\begin{aligned} & \text { M }-29.2 \\ & \text { F- } 23.4 \end{aligned}$	$\begin{gathered} M-19.2 \\ F-18.2 \end{gathered}$	-	$\begin{aligned} & \text { M - } 28.56 \\ & \text { F - } 27.61 \end{aligned}$	$\begin{gathered} \text { M }-25.81 \\ F-24.2 \end{gathered}$	39.1	22.8	27
4	Width of septal leaflet	$\begin{gathered} \text { M }-33.2 \\ \text { F- } 29 \end{gathered}$	$\begin{gathered} M-37 \\ F-35 \end{gathered}$	-	$\begin{gathered} \text { M }-29.14 \\ \text { F }-29.5 \end{gathered}$	$\begin{gathered} M-30.12 \\ F-28 \end{gathered}$	32	30	25.2

5	Height of anterior leaflet	M - 24.6 F- 20.2	$\begin{gathered} M-24 \\ F-21 \end{gathered}$	23.88	-	-	-	-	21.1
6	Height of posterior leaflet	M - 25.2 F- 19.2	$\begin{gathered} M-17.8 \\ F-16.5 \end{gathered}$	21.35	-	-	-	-	16.6
7	Height of septal leaflet	M - 15.8 F- 15.2	$\begin{gathered} M-17 \\ F-15 \end{gathered}$	18.33	-	-	-	-	16.7

Table 3: Comparison of average number of clefts in posterior leaflet of the right atrioventricular valve with previous studies

Authors/study	Single cleft	Two cleft	Three cleft	Four cleft	Absent cleft
Mohammed AB Motabagani	80%	-	-	-	20%
Present study	43%	32.75%	8.62%	3.44%	12.06%

Results

Dimensions of various components of the right atrioventricular valve were studied in 54 heart specimens obtained from embalmed cadavers. The following observations werenoted:

Table 1 showing results obtained

Discussion

The right atrioventricular (tricuspid) valve is a multi-component complex structure. Right atrioventricular valveal though described as having three leaflets, review of literature suggests that the number of leaflets may vary or accessory leafletsmay be found between the main leaflets [2]. Magdalena Skwarek et al performed a study on 75/ formalinfixed adult human hearts, between 27-79 years of age and of both sex without any macroscopic pathological changes. They classified the right atrioventricular valve in fivetypes depending upon thenumber of cusps(3cusps-Type1, 4 cusps-Type2, 5 cusps-Type3, 6 cusps-Type4, 7 cusps-Type5) [3]. M. Skwarek et al studied thedistribution of tendinous chords with respect to their position in themain and accessory leaflets, whether in the margin, ventricular surface or commissural area [4]. M. Skwarek et al performed a study on 96 formalin-fixed hearts and madethefollowing measurements [5]:

1. Theattachment length of anterior, posterior and septal leaflets
2. Thefrontal and sagittal dimensions of the tricuspid valveattachment
3. Therightatrioventricular orificearea
4. Thecircumferenceof thetricuspid val veattachment orifice
5. The evolution of dimensions of the right atrioventricular orifice with ageing
Mohamed A.B. Motabagani performed comparative anatomical, morphometric and histological studies of thetricuspid valve complex in human and some mammalian hearts (ten hearts of each species). The author made the following measurements[1]:
6. Thetotal annular length of the valve
7. The annular length of each leaflet
8. The height of each leaflet, being measured from the middle of its baseat the annulus fibrosus to the middle of its free edge. When scallops were identified in a leaflet, the sum and mean of their heights wereconsidered.
9. Theannular length and height of each commissure
10. The length and number of different types of the chordaetendineae

The author observed that the anterior leaflet was thelargest, triangular and devoid of clefts.

Fernando A ntoniali et al performed a descriptive autopsy study on thirty human hearts without fixation Digital images of the tricuspid ring in its anatomical position and after flattening were analysed by specific software. The mean measurements and ratioswere compared in the two differentsituations [6]. N ataliaet al performed astudy on digital photographs of 41 hearts obtained from autopsies performed in coroner's office. The photographs were processed using MATLAB software specially developed for the study which provided following measurements [7]:

1. Total perimeter of the annuli of thetricuspid and mitral valves
2. Area of each valvula and the total area that it occupied
3. Intercommissural distance of theheart valves
4. Circular area of theleft ventricleat its midpoint
5. Size of thegreatest axis of the left ventricle
6. Perimeter and area of the valvar lascinias
7. Volumeof theleft ventricle
R. Kalyani et al studied 100 formalin-fixed hearts obtained from patients who had died of non-vascular causes and whoseageranged from 8 to 85 years. The authors measured following dimensions [8]:
8. Theattachment lengths of anterior, posterior and septal leaflets
9. Thecircumference of val vealong with frontal and sagittal dimensions
10. A rea of valve expressed as a triangle and as an eclipse
M. Skwarek et al performed a study on four cuspidal model of right atrioventricular val veon 107 formalin-fixed heart samples which weretaken from adult humans. The authors used the four-cuspidal form of thetricuspid valve as the simplest model to show the appearance of accessory leaflets for anatomical and statistical examination. A group of 45 tricuspid valves, classified according to an earlier schemeas Type 2 was identified.

The authors identified subtypes of Type 2 on the basis of the location of the accessory leaflets as follow:

1. Subtype 2A: an accessory leaflet (Cac) between theposterior cusp (CP) and the septal cusp (CS) wasfound in a group of 24 hearts;
2. Subtype2B: Cac between the anterior cusp (CA) and the CS, was found in a group of 10 hearts;
3. Subtype2C: CactheCA and theCP, a group of 11 hearts.
Afterwards, using a flexiblemillimetre ruler, the authors madefollowing measurements:
4. Theattachment length of themain leafles: anterior, posterior and septal
5. Theattachment length of theaccessory leaflets in particular subtypes: $2 \mathrm{~A}, 2 \mathrm{~B}$, and 2 C
6. Thelength of thetricuspid attachment in particular walls of theright ventricle: anterior, posterior and septal.
Theresults obtained werestatistically analysed by Pearson's analysis and oneway analysis of variance (ANOVA; $p<0.05$).

On thebasis of theresults of their study theauthors concluded that theseparation of accessory leaflets is a complex process [9].

Ashraf M. Anwar et al performed a study on assessment of normal tricuspid val ve anatomy in 100 normal adults by real-time three-dimensional echocardiography. The following points were checked for visualization:

1. Tricuspid annulus diameter and area
2. Tricuspid valve leaflets (number, mobility, thickness and relation to each other)
3. Tricuspid valvearea
4. Tricuspid valve commissures (anteroseptal, anteroposterior and posteroseptal) including the position of their closureline
All these structures wereclassified according to a subjective 4 point scale for image quality ($1=$ not visualised, $2=$ inadequate, $3=$ sufficient and $4=$ good). Thetricuspid annulusdiameter and area could bemeasured in 63patients (70\%); normal values were $4.0 \pm 0.7 \mathrm{~cm}$ and $10.0 \pm 2.9 \mathrm{~cm}^{2}$. Tricuspid valve area could be measured in 77 patients (86%) and mean was $4.8 \pm 1.6 \mathrm{~cm}^{2}$.

Tricuspid valve commissural width could be obtained in 63 patients (70%) mean commissural width in these patients was $5.4 \pm 1.5 \mathrm{~mm}$ for the anteroseptal commissure, $5.2 \pm 1.5 \mathrm{~mm}$ for posteroseptal commissure and $5.1 \pm 1.1 \mathrm{~mm}$ for anteroposterior commissure respectively [10].
C. Tei et al performed a two dimensional echocardiographic study on five normal hearts. The authors recorded valve leaflets and their annular attachments from a view of the right ventricular inflow tract obtained by placing thetransducer at an intermediate position between the left ventricular apex and the left lower sternal border. Thetransducer was rotated, and recordings were madeat 30 degrees rotational intervals around the circumference of the tricuspid valveannulus. Theauthors studied cyclical pattern of variations in tricuspid annular sizeusing 12 measurements madeduring the cardiac cycle. The authors measured annular areas and circumferences, the maximum and minimum tricuspid annular sizes and their percent reduction in 16 normal subjects and 18 patients with tricuspid regurgitation. Theauthors observed that the mean maximum annular circumferenceand area were $11.9 \pm 0.9 \mathrm{~cm}$ and $11.3 \pm$ $1.8 \mathrm{~cm}^{2}$ in normal subjects. They were significantly greater in tricuspid regurgitation ($14.0 \pm 0.7 \mathrm{~cm}$ and $15.8 \pm 1.8 \mathrm{~cm}^{2}$, respectively). The mean minimum annular sizes were much larger in tricuspid regurgitation ($12.5 \pm 0.6 \mathrm{~cm}$ and $13.0 \pm 1.4 \mathrm{~cm}^{2}$) than in normal subjects ($9.6 \pm 0.9 \mathrm{~cm}, 7.6 \pm 1.4 \mathrm{~cm}^{2}$). Thus, the percent reduction of annular circumferenceand area were significantly decreased in tricuspid regurgitation. For anatomic correlations, authors
measured thetricuspid annular circumference in 18 hearts without underlying valvular diseaseobtained from autopsy cases. Theannular circumferencewas measured in the fresh and fixed states, which was $13.5 \pm 0.8 \mathrm{~cm}$ in fresh state and $12.0 \pm 0.8 \mathrm{~cm}$ fixed state. They observed that the values measured in the fixed hearts were more similar to measurements obtained by echocardiography in a group of normal subjects. They concluded that tricuspid annular reconstruction by the new two-dimensional echocardiographic method provides additional information about normal and abnormal size and function of the tricuspid valveannulus[11].

Gerola LR et al performed an anatomic study of theright atrioventricular val vein children under one year of age using a conservativemethod of dissection of the heart valve Themain aspects studied werethe number of cusps and their morphometric characteristics, such as the width of the base and the depth of the cusps, thenumber of papillary muscles, number of tendinous cords, and diameter of the fibrous ring and the last one were divided in three regions, anterior, posterior and septal for localization of cusps. They observed that the number of cusps varied from two to four with three cusps as the commonest finding. Thefourth cusp, if present, was classified as anterolateral in location. The anterior and septal cusps had bases bigger than those of the posterior and anterolateral cusps; the septal cusp was deeper than the others; and the number of tendinous cords was greater for the anterior and septal cuspsthan for the posterior and anterolateral cusps [12]. Inflammation induces angiogenesis in the valveand vascularisation in the normally avascular layers of valve[13].

Inflammation of a valvecan causethe valvecusps to stick together. Later, fibrous thickening occurs followed by loss of flexibility and shrinkage producing either stenosis or insufficiency [14].

Ebstein anomaly is a congenital malformation of the heart that is characterized by apical displacement of the septal and posterior tricuspid valve leaflets, leading to atrialization of the right ventricle with a variabledegree of malformation and displacement of the anterior leaflet [15].

Tricuspid valve annuloplasty performed with either mitral and/ or aortic valve operations is accomplished either through a full or partial lower sternotomy approach or less invasive right mini thoracotomy exposure[16].

The treatment of functional insufficiency of the tricuspid val ve by val vuloplasty is currently themost accepted technique. It is known that dilatation of the anterior and posterior segments correspond to 5 / 6 of
the total dilatation of tricuspid annulus. Thus, treatment of the dilatation of these segments by annuloplasty restores most of thenormal anatomy of thetricuspid valvering becausetheseptal segment is affected very little[6].

A ccurateanatomical knowledgeis of great clinical importance for diagnosing val vular lesions, surgical intervention and for devel opment of novel operating techniques. A part from this, it has potential application for studying functioning of tricuspid valveby echocardiography.
In clinical practice, the size of prosthesis to be inserted is usually determined by thesize of native valve annulus. It demands accurate knowledge of annular dimensions.

Partial transfer of tricuspid valveto themitral valve is an effective procedurefor the treatment of mitral valve insufficiency secondary to ruptured chordae tendineaeof the anterior leaflet.

The treatment of functional insufficiency of the tricuspid valve by the valvuloplasty is currently the most accepted technique. Tricuspid valvedisease is frequently associated with diseases of mitral valve, therefore these two valves are repaired simultaneously using de vegatechniqueor in the case of stenosis, balloon valvuloplasty.

Conclusion

This study will help cardiac surgeons to use the morphometric data whiledoing surgeries on theright atrioventricular valve.

References

1. Mohamed A. B. Motabagani. Comparative anatomical morphometric and histological studies of the tricuspid valve-complex in human and some mammalian hearts. J. A nat.Soc.India 2006; 55(1): 1-23.
2. M.D. Silver,J.H.C. Lam, Rangnathan and E.D. Wigle. Morphology of the human tricuspid valve. Circulation. 1971; 43: 333-348.
3. Magdalena Skwarek, Marek Grezybiak, Adam kosin'ski, Jolanta H reczecha. Notes on the morphol ogy of thetricuspid valvein theadult human heart. Folia Morphol. 2004; 63 (3): 319-324.
4. M.Skwarek,J.H reczecha, M.Dudziak, J.Jerzemowski, M.Grzybiak. The morphology and distribution of the tendinous chords and their relation to the papillary muscles in thetricuspid valve of the human heart. Folia M orphol. 2007; 66(4): 314-322.
5. M.Skwarek,J.H reczecha, M.Dudziak, J.Jerzemowski, M.Szpinda, M.Grzybiak. M orphometric features of the right atrioventricular orifice in adult human hearts. Folia Morphol . 2008; 67(1): 53-57.
6. Fernando Antoniali, Domingo Marcolino Braile, Glória Maria Braga Poterio, Cledicyon Eloy da Costa, Mauricio Marson Lopes, Gustavo Calado de Aguir Ribeiro, et al. Proportion among the segments of the normal tricuspid valve annulus: parameter for valve annuloplasty. Braz J Cardiovasc Surg 2006; 21(3): 262-271.
7. Natalia M artins Magacho de Andrade, Eduardo Tinois, Reinaldo Wilson Vieira, Domingo Marcolino Braile, Orlando Petrucci Junior, Pedro Paulo Martins de Oliveira et al. Coefficients of proportions of the atrioventricular val ves: an anatomical study of valvar segments of normal individuals. Braz J Cardiovasc Surg 2005; 20(3): 255-260.
8. R. Kalyani, M.J. Thej, K. Prabhakar, T. K. Venkatesh, A. K. Thomas, and J. Kiran. Morphometric analysis of tricuspid valve: An Indian Perspective. J N at Sci Biol Med. 2012; 3(2): 147-151.
9. M. Skwarek, J. Hreczecha, M. Dudziak, J.Jerzemowski, B. Wilk, M. Grzybiak . The morphometry of the accessory leaflets of the tricuspid valve in a four cuspidal model .Folia Morphol. 2007; 66(4): 323-327.
10. Ashraf M.A nwar,Marcel L.Geleijnse, Osama L.I.Soliman, Jackies McGhie, Ren'e Frowijn, Attila Nemes, et al.Assessment of normal tricuspid valve anatomy in adults by real-time three dimensional echocardiography.
11. C Tei, J P Pilgrim, P M Shah, J A Ormiston, M Wong. Thetricuspid val veannulus: study of sizeand motion in normal subjects and in patients with tricuspid regurgitation. Circulation.1982; 66: 665-671.
12. Gerola LR, Wafae N, Vieira MC, Juliano Y, Smith R, Prates JC. A natomic study of the tricuspid valve in children .Surg Radiol Anat. 2001; 23(3): 149-53.
13. Michael H. Ross, Wojciech Pawlina. Microanatomy of cardiovascular system. Histology text and atlas. $6^{\text {th }}$ edition. Wolter Kluwer, Lippincott Williams and Wilkins. Philadelphia: page no.402-408.
14. Richard S. Snell. Clinical anatomy by regions: $9^{\text {th }}$ edition Lippincott Williams \& Wilkins/ Wolters kluwer Health. 2012; page no 91.
15. Ebstein's anomaly Emedicine.medscape.com/ article15447-overview.A ccessed on 13/ 7/ 2012.
16. Suri R.Mi. Tricuspid valvedisease. Cohn Lh. Cardiac surgery in the adult. N ewY ork: McGraw- hill, 2008; 1111-1123.

[^0]: Author's Affiliation: *A ssistant professor, Department of Anatomy, Dr.S.C.G.M.C., Vishnupuri, Nanded, India. Professor and Head, Dept of A natomy, Seth G.S. Medical College and K.E.M. Hospital, Mumbai.

 Corresponding Author: Lata Munde, Assistant professor, Department of Anatomy, Dr.S.C.G.M.C., Vishnupuri, Nanded, India.

 E-mail: Iatamunde@gmail.com

